8 research outputs found

    A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability

    Get PDF
    Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (R2 = 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited an improved tolerance to reactive oxygen species (ROS)-mediated oxidative imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins

    Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant

    Get PDF
    The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O-2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O-2. In green tissues, this putative effect is masked by photosynthetic O-2 evolution. However, O-2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions.This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'

    A kaleidoscope of photosynthetic antenna proteins and their emerging roles

    Get PDF
    The latest fundamental knowledge obtained on the light-harvesting mechanisms of the antenna proteins can be bridged to biotechnical optimization of photosynthesis.Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis

    Lettuce reaction to drought stress: Automated high-throughput phenotyping of plant growth and photosynthetic performance

    No full text
    The unavailability of fresh water is one of the main concerns for horticulture nowadays and it is supposed to get worse in the coming future. Some crops are more vulnerable than others to drought stress such as leafy vegetables. It is therefore essential to identify and select cultivars that can overcome this kind of abiotic stress with limited or no substantial reduction in final yield, and to do it in a fast and effective way. High throughput phenotyping combined with advances in genome sequences provide efficient and reproducible approaches that are facilitating the discovery of genes and cultivars with improved plant performance under sub-optimal conditions. Drought resistance of two different Salanova® cultivars, ‘Aquino’ (green butterhead) and ‘Barlach’ (red butterhead), was tested, by using PlantScreen™, a high-throughput non-invasive imaging platform developed at Photon Systems Instruments (PSI, Czech Republic). The two cultivars performed similarly in both control (70% soil water content) and mild drought stress conditions (40% soil water content). The results demonstrated that ‘Aquino’ grew faster in control conditions at early growth phase, while in later phase it is the red ‘Barlach’ that reached larger biomass. In drought conditions growth performance of both cultivars was rapidly compromised. However, ‘Barlach’ grew better and had improved biomass in both control and mild-drought stress conditions in comparison with ‘Aquino’. Light curve protocol was used to address light use efficiency of the two cultivars. Interestingly, we observed a rapid decline in PS II operating efficiency already three days upon mild drought stress initiation. Nevertheless, there was no obvious difference in the performances between the two cultivars. In conclusion, the results of quantitative analysis of plant growth and photosynthetic performance, allowed to set up a protocol for high-throughput image-based analysis of different morpho-physiological traits associated with the early phase of drought response

    Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: A case study on tomato

    No full text
    Designing and developing new biostimulants is a crucial process which requires an accurate testing of the product effects on the morpho-physiological traits of plants and a deep understanding of the mechanism of action of selected products. Product screening approaches using omics technologies have been found to be more efficient and cost effective in finding new biostimulant substances. A screening protocol based on the use of high-throughput phenotyping platform for screening new vegetal-derived protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis to elucidate the mechanism of the most active PHs has been applied on tomato crop. Eight PHs (A-G, I) derived from enzymatic hydrolysis of seed proteins of Leguminosae and Brassicaceae species were foliarly sprayed twice during the trial. A non-ionic surfactant Triton X-100 at 0.1% was also added to the solutions before spraying. A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100 was also included. Untreated and PH-treated tomato plants were monitored regularly using high-throughput non-invasive imaging technologies. The phenotyping approach we used is based on automated integrative analysis of photosynthetic performance, growth analysis, and color index analysis. The digital biomass of the plants sprayed with PH was generally increased. In particular, the relative growth rate and the growth performance were significantly improved by PHs A and I, respectively, compared to the untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to differentiate the photosynthetic performance of treated and untreated plants. Finally, MS-based untargeted metabolomics analysis was performed in order to characterize the functional mechanisms of selected PHs. The treatment modulated the multi-layer regulation process that involved the ethylene precursor and polyamines and affected the ROS-mediated signaling pathways. Although further investigation is needed to strengthen our findings, metabolomic data suggest that treated plants experienced a metabolic reprogramming following the application of the tested biostimulants. Nonetheless, our experimental data highlight the potential for combined use of high-throughput phenotyping and metabolomics to facilitate the screening of new substances with biostimulant properties and to provide a morpho-physiological and metabolomic gateway to the mechanisms underlying PHs action on plants

    Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity

    Get PDF
    Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect in planta. However, the most challenging part then is the data analysis and the interpretation of the omics datasets. In this work, we present an example of how different tools, based on multivariate statistical analysis, can help to simplify the omics data and extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown in controlled conditions and under salinity. The biostimulants induced different phenotypic and metabolomic responses in both crops. In general, they improved growth and photosynthesis performance under control and salt stress conditions, with better performance in lettuce. To identify the most significant traits for each treatment, a random forest classifier was used. Using this approach, we found out that, in lettuce, biomass-related parameters were the most relevant traits to evaluate the biostimulant mode of action, with a better response mainly connected to plant hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence parameters in combination with certain antistress metabolites that benefit the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets obtained from the -omics to extract the relevant information

    Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses

    Get PDF
    The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml–1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition

    A kaleidoscope of photosynthetic antenna proteins and their emerging roles

    Get PDF
    Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis
    corecore